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Abstract— This paper addresses a vision-based 3D motion
estimation framework for humanoid robots, which copes with
human-like walking pattern. A humanoid robot, called Rob-
oray, is designed for dynamic walking control with heel-toe
motion like a human. In spite of stability and energy effi-
ciency of the dynamic walking, it accompanies larger swaying
motion and more uncertainty in camera movement than the
conventional ZMP (Zero Moment Point)-based walking does.
The framework effectively uses on-board odometry information
from the robot to improve the performance of the vision-
based motion estimation. To accomplish this, we propose an on-
board odometry filter which fuses kinematic odometry, visual
odometry, and raw IMU data. And the odometry filter is
combined with vision-based SLAM to provide accurate motion
model, so it enhances the SLAM estimates. Experimental
results in indoor environment verify that the framework can
successfully estimate the pose of Roboray in real-time.

I. INTRODUCTION

Recently, a number of biped humanoid robots have
emerged and their walking and motion planning methods
have been stabilized in performance [1], [2]. As development
of humanoid robots which aims to mimic human motion is
more emphasized, novel methods such as dynamic walking
control (torque servo-based method) [3] and heel-toe motion
generation [4] that involve human-like locomotion are intro-
duced. They are essential for navigation and exploration in
more realistic environment because of stability and energy
efficiency in walking [5].

To achieve accurate localization and geometric representa-
tion of the world for humanoid robots, vision-based SLAM
(Simultaneous Localization And Map building) is widely
used due to small size, lower energy consumption and rich
information of camera. Many good SLAM solutions are
already being proposed in mobile robotics research [6] or
hand-held devices [7]. However, they still have challenging
problems for humanoid robots because they should deal with
the inherited properties of erratic swaying motion, various
uncertainty, and resulting motion blur.

The following methods try to make use of vision-based
approaches for humanoid robot. Various studies on visual
odometry [8], [9] and localization with a known map [10]
were proposed and evaluated. In a seminal work, Stasse
et al. [11] utilized the monoSLAM system [12] for HRP-
2. It was the first implementation of real-time vision-based
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Fig. 1. A multiple frame shot of dynamic walking Roboray

SLAM for a humanoid robot assisted by pattern generator
and inertial sensing. The other SLAM approach [13] used a
stereo camera to get 3D point cloud data. Then robust Rao-
Blackwellized particle filter was applied to estimate the robot
pose and the shape of a 3D grid map concurrently.

Above methods work well in the conventional position
servo-based method like ZMP (Zero Moment Point)-based
walking control which has relatively small and smooth
movement of the upper body of the robot. However, when
we apply them to a dynamic walking robot, especially with
heel-toe motion, in our tests, they cannot be well-conditioned
to estimate the robot pose any more. The reason is that
they basically assume a motion model of smooth camera
movement.

In this paper, we propose a vision-based 3D motion
estimation method integrated with on-board odometry infor-
mation for a human-like walking robot. It consists of two
modules, EKF (Extended Kalman Filter)-based odometry
estimation module and vision-based SLAM module. 1) In
the odometry module, forward kinematics model of the
robot and encoder values of each joint are used to obtain
kinematic odometry which means the robot pose relative
to a starting point. Visual odometry is also calculated with
sequential stereo images to provide additional information to
the odometry estimation. Then, a combination of gyro rate
and acceleration measured from IMU (Inertial Measurement
Unit) sensor is fused with the relative pose data obtained
from the kinematic odometry and the visual odometry. 2)
The output of the fused motion estimation, which operates
in real-time at up to 100Hz, is applied to the vision-based
SLAM module via the form of relative pose change and
its covariance. It improves the SLAM estimates in that it
can compensate motion errors and provide more accurate
prediction model.

The proposed vision-based SLAM method coupled with
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odometry information has the following properties.
1) It is unnecessary to set up additional sensors to obtain

odometry information. The on-board sensors such as
joint encoders, force sensors and IMU are only require-
ments to implement the odometry. Humanoid robots
are commonly equipped with those sensors for walking
and balancing.

2) It successfully copes with rapid inter-image changes
that are observed while the robot is walking. It en-
riches the performance of visual feature tracking by
consistently providing the changes of the robot pose
even with heel-strike and toe-off walking motion.

3) It can reduce adverse effect of odometry error on
SLAM by maintaining two separate modules. When
failure in odometry estimation is detected, the odome-
try module is simply restarted and so the SLAM mod-
ule can receive the odometry information consistently.
Consequently, it helps to reduce estimation errors and
increase a chance of loop closure of SLAM.

This paper is organized as follows. A problem definition
of vision-based motion estimation for a human-like walking
robot is explained in Section II and on-board odometry
estimation is organized in Section III. Section IV presents
a 3D vision-based SLAM method for a humanoid robot,
combining with the on-board odometry information. Then,
Section V shows the experimental results of the proposed
method with our humanoid robot, Roboray, and conclusion
follows.

II. DYNAMIC WALKING CONTROL
WITH HEEL-TOE MOTION GENERATION

A. A Biped Humanoid Robot, Roboray

We developed a biped humanoid robot, Roboray, whose
height and weight are 150cm and 60kg respectively. It has
a total of 54 DOFs which are 6 for each leg, 1 for the torso,
3 for the head, 7 for each arm, and 12 for each hand. The
legs are designed for having compliant joints by adopting
cable-driven actuator mechanism with low control gain.

The joint compliance of Roboray is helpful for its dynamic
walking control to allow the robot to stably interact with
the ground by dissipation; however, it has more chances to
increase swaying motion of the camera, located at the head,
especially for human-sized Roboray.

B. Dynamic Walking Control

Dynamic walking control of humanoid robots, called as
torque servo-based method, controls the joint torque to
achieve the desired torque to walk. For Roboray, an adaptive
control framework of dynamic walking is developed [5]. It
has advantages in energy efficiency and stability to surround-
ings with human-like walking pattern. Figure 1 is a multiple
frame shot of Roboray’s walking, which shows apparently
human-like knee-stretched locomotion.

The dynamic walker, on the other hand, has more
disadvantages to implement vision-based approaches than
the conventional ZMP walker. While walking, its periodic
controlled-falling motion and its stretched knee make the

Fig. 2. Heel-toe motion, which is comprised of heel-strike (circle) and
toe-off (diamond) motion, generated by dynamic walking Roboray

(a) (b) (c)

Fig. 3. Illustration of the heel-toe motion of Fig. 2, which are organized
into (a) heel-strike phase, (b) opposite heel-rise phase, and (c) opposite
toe-off phase

camera to sway back and forth like an inverted pendulum.
As a result, rapid change between consecutive images and
motion blur in an image shot more frequently happen in the
dynamic walker.

C. Heel-toe Motion Generation

A state machine controller [5] of Roboray is able to
implement various walking styles including heel-toe motion
by using gait primitives. It helps Roboray to walk with a
natural gait cycle in the same manner of a human [14].
The gait cycle plays an important role in force absorption
and transmission for walking [15]. The heel-toe motion of
Roboray on a flat ground is shown in Fig. 2. It consists of
three phases, 1) heel-strike phase (The heel of the right foot
initially contacts the ground.), 2) opposite heel-rise phase
(The left foot is in the preparation stage for swinging.), and
3) opposite toe-off phase (The right foot fully contacts on
the ground, then the toe of the left foot takes off.)

When the heel-toe motion is generated, the height of the
camera is no longer constrained to be constant in sagittal
plane because the pelvis of the robot goes up and down
repeatedly. Moreover, the heel-strike phase increases the
impact of the foot on the ground and it leads to fluctuation in
the motion of the camera. They aggravate the aforementioned
problems of the dynamic walking control, plus the vision-
based approaches cannot utilize the assumption of smooth
motion of camera any more.

III. ON-BOARD ODOMETRY INFORMATION FUSION

A. Kinematic Odometry Information

In case of a humanoid robot, odometry known as dead-
reckoning can be easily obtained by forward kinematics with
the length of each link and the measured angle of each joint.
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Fig. 4. Resulting motion estimation of the kinematic odometry [(a)→(b)
→(c)]. It was tested on real sensor data acquired by Roboray. Due to
inadequate ground contact of heel-toe motion, Roboray gets to believe that
it is going up in the air.

Figure 3 illustrates the walking sequence of Fig. 2 to describe
odometry calculation in detail. The stance foot (gray), which
has a reference axis (SF ) for forward kinematics, is switched
between the left foot (dotted line) and the right foot (solid
line) as the robot walks. It can be determined by the ground
contact condition which can be measured from the force
sensor on the ankle.

In this paper, the kinematic odometry denotes the camera
pose with respect to the global coordinate, G, at time k as

GTCam(k) =
[
GrCam(k) GqCam(k)

]T
(1)

where GrCam is position and GqCam is orientation with
quaternion. The kinematic odometry can be recursively cal-
culated via a 6DOF rigid body transformation, ⊗:
GTSF (k − 1) = GTCam(k − 1)⊗ CamTSF (k − 1) (2)

GTCam(k) = GTSF (k − 1)⊗ SFTCam(k). (3)

First, the pose of the stance foot with respect to G at time
(k− 1) is obtained from previous forward kinematics. Then,
the kinematic odometry is updated by using the relative pose
between the stance foot and the camera at time k.

Especially with the dynamic walking control, the desired
trajectory of the pattern generator of the ZMP walking
[11] cannot be utilized for odometry calculation because of
the nature of the torque control method. For that reason,
this kinematic odometry becomes more useful for motion
estimation of dynamic walking Roboray. However, the accu-
racy of the kinematic odometry highly depends on contact
condition between the foot and the ground, and it is strongly
affected by considerable uncertainty resulting from slippage
and friction of the foot. In addition, the heel-strike phase and
the opposite heel-rise phase could disturb the stance foot to
be fully contacted on the ground as shown in Fig. 3(b). It

makes the reference axis (SF ) not to be located parallel to
the ground, and the uncertainty in the foot contact point leads
to inaccurate motion estimation like Fig. 4.

B. Visual Odometry Information

To make up for the kinematic odometry and improve
ego-motion estimation, performing what is known as visual
odometry is addressed. For easier implementation, it makes
use of calibrated stereo camera installed on Roboray’s head.
Basically our visual odometry adopts a generally known
approach [16] which is comprised of two steps; 1) incremen-
tal visual odometry that accomplishes initial relative pose
estimation by using RANSAC-based three point algorithm
and 2) local bundle adjustment over recent 5 images to refine
the relative estimation.

The vision-only method is still suffering in the aforemen-
tioned human-like walking pattern because feature tracking
could be frequently lost in many cases of swaying motion.
Nevertheless, from the point of view of sensor fusion,
it is important that estimate covariance of uncertainty is
additionally available through the parameter optimization of
the bundle adjustment as well as the relative pose of camera
obtained from inter-image changes.

C. Fusion with raw IMU Information

The ego-motion estimation of on-board odometry is or-
ganized based on an expanded idea of the IMU filter of
quaternion estimation [17] which uses acceleration and gyro
rate as a control input.

1) IMU prediction: The estimate state x is composed of
position Gr, orientation Gq, and velocity Gv with respect to
the global coordinate. Also acceleration bias Bδa and gyro
rate bias Bδωωω with respect to the body coordinate of stereo
camera is added to have more accurate estimation.

x =
[
Gr Gq Gv Bδa Bδωωω

]T
(4)

In order to implement the prediction process with EKF,
the derivative of state x is derived from kinematic relations
with zero-mean additive Gaussian noise ννν as follows:

ẋ =
[
Gṙ Gq̇ Gv̇ B ˙δa B ˙δωωω

]T
=


Gv

1
2Ω[Bωωω − Bδωωω + Bνννωωω]Gq

R[Gq](Ba− Bδa + Bνννa)− [2GΩ×]Gv + Gg
Bνννδa
Bνννδωωω

 (5)

with

ννν =
[
Bνννa

Bνννδa
Bνννωωω

Bνννδωωω
]T
, (6)

where ΩΩΩ is the earth rotation rate of Coriolis effect and Gg
is the acceleration of gravity. The control inputs of EKF,
Ba and Bωωω, are acceleration and gyro rate measured from
IMU, considering a rigid body transformation between stereo
camera at the head and IMU on the pelvis. The related
functions are defined like this: R[q] is the rotation matrix
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of quaternion q, [y×] is the cross product matrix of vector
y, and

Ω[ωωω] =

[
0 −ωωωT
ωωω −[ωωω×]

]
, (7)

The computation of the derivative of estimate covariance
P is achieved by the Lyapunov equation.

Ṗ = FP + PFT + GQGT (8)

where Jacobians of ẋ with respect to the state and the noise
are calculated as

F =
∂ẋ

∂x
, G =

∂ẋ

∂ννν
, (9)

respectively and corresponding covariance of noise uncer-
tainty ννν is obtained as

Q = E[ννννννT ]. (10)

The derivatives of (5) and (8) can be used in prediction
propagation of the filter system where the predicted state
x and its covariance P can be calculated via numerical
integration with sampling time ∆t such as the Runge-Kutta
method.

2) IMU update: The measurement update process is pos-
sible to compensate orientation errors of the estimate state.
And the result could be reflected to the other state elements
via the estimate covariance as well. It is performed with the
difference between actual measurement Ba of acceleration
of IMU and predicted measurement vR of gravity vector
in the body coordinate which is computed by the estimated
quaternion.

ẋ = −PHTR−1(Ba− Bδa− vR) (11)

Ṗ = −PHTR−1HP (12)

where

vR = R[Gq̄]Gg, (13)

q̄ is the conjugate of a quaternion, and R is measurement
covariance of acceleration. In (11) and (12), the measurement
sensitivity matrix H is denoted as follows:

H =
[
03×3 HR 03×9

]
(14)

with

HR = −2
1

||Gq||2
[vR×]Ξ[Gq]T (15)

where

Ξ[q] =

[
−qTr

q0I3×3 + [qr×]

]
(16)

for

q =
[
q0 qTr

]T
. (17)

The derivatives of (11) and (12) can be augmented to the
state propagation equations of (5) and (8) respectively; then,
as a result, the updated state x and its covariance P can be
obtained at once.

(a)

(b) (c)

Fig. 5. Resulting motion estimation of the proposed method fusing with
kinematic odometry, visual odometry, and raw IMU data [(a)→(b)→(c)]. It
uses the same sensor data of Fig. 4 and it can offer more accurate odometry
information to the SLAM module.

3) Update with relative odometry data: Kalman update
with relative pose is adopted to fuse kinematic and visual
odometry data into the IMU filter framework, which is
similar to the stochastic cloning Kalman filter [18] with
no landmark. There are two main reasons to organize the
update structure as above. 1) Using relative data of kinematic
and visual odometry are more reliable and less sensitive to
errors than using accumulated data. 2) It has an advantage
in asynchronous update with visual odometry for 30Hz and
kinematic odometry for 100Hz.

Initially, the augmented state vector xaug and its co-
variance Paug is constructed as the form of followings,
which simply have a copy of the current camera pose as
(Grvo,

Gqvo) for visual odometry and (Grodo,
Gqodo) for

kinematic odometry.

xaug =
[
Gx Grvo

Gqvo
Grodo

Gqodo
]T

(18)

Paug =

 Px,x Px,vo Px,odo

PT
x,vo Pvo,vo Pvo,odo

PT
x,odo PT

vo,odo Podo,odo

 (19)

The augmented state vector can be propagated via the
IMU prediction and update identically, but the augmented
elements are kept constant because they should be used to
estimate relative measurement with respect to the time of
augmentation. When the relative odometry information from
visual or kinematic odometry is available at time k, we can
update the augmented state vector

xaug,k =
[
Gxk

Grk−ny
Gqk−ny

]T
, (20)

which includes the augmented camera pose at previous time
(k − ny) for y ∈ {vo, odo}. Here, the measurement model
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for Kalman update represents the relative pose change of the
camera from time (k − ny) to k.

hy(xaug,k) =

[
∆ry
∆vy

]
=

[
R[Gq̄k−ny

](Grk − Grk−ny
)

ρ[Gq̄k−ny
× Gqk]

]
(21)

where ρ[q] is Rodrigues’ rotation formula for quaternion q.
After Kalman update, the augmented state and its correlated
covariance should be eliminated and re-augmented with the
newly updated camera pose at time k for next update. And
the update process operates repeatedly whenever information
is received from visual or kinematic odometry.

The proposed on-board odometry fusion is a kind of
relative localization methods to estimate ego-motion only.
Therefore, it has remaining problems on accumulating odom-
etry error as the robot walks. However, reduced error of the
proposed odometry as shown in Fig. 5 makes it possible to
increase the performance of SLAM remarkably by providing
more precise motion model.

IV. 3D VISION-BASED SLAM

A. Motion Model of Vision-based SLAM

As a motion model of vision-based SLAM, a constant
velocity model [11], [12] is most often used to provide better
tracking performance during normal operation of smooth
camera motion. For dynamic walking control, an interacting
method with different motion models [19] would be more
appropriate to adapt to various motion changes of the hu-
manoid robot.

In this paper, the motion model is sucessfully superseded
by the proposed on-board odometry as follows:

x(k|k − 1) =

[
rG(k|k − 1)
qG(k|k − 1)

]
=

[
rG(k − 1|k − 1) + ∆rG(k)
qG(k − 1|k − 1)×∆qB(k)

]
(22)

where ∆rG(k) and ∆qB(k) are relative pose data from
the proposed odometry filter. Because the motion model
only requires relative pose difference and its covariance as
an input, the odometry filter module in section III can be
organized separately from the SLAM module.

When using acceleration and gyro rate of IMU, filter diver-
gence is often brought on by inaccurate sensor data which are
inconsistent with their uncertainty modeling. To filter out the
erratic odometry information, in the proposed odometry filter,
validation gating with the Mahalanobis distance is applied.

xTP−1x < χ2
dim(x),0.95 (23)

where the gate threshold is obtained from the inverse chi
square cumulative distribution table at a dimension of x
and a significance level 0.95. In case of failing to meet the
condition of (23) during odometry estimation, the odometry
module simply gets to be reset, and then it can provide
the relative data again to the SLAM module. The separate
architecture could decrease negative influence of odometry

errors on the SLAM estimation directly. While the filter is
being reset, the odometry input is unavailable. Meanwhile,
a constant position model combined with re-localization
could help to reduce filter divergence and maintain tracking
consistency of the SLAM module.

B. Vision-based SLAM System

As the basic framework of the SLAM module, the EKF
SLAM system with visual features [20] is used. Requirement
on relatively small computational burden and usability of
stereo camera are considered. The visual feature composed
of FAST detector and histogram of gradient descriptor is
extracted as visual landmark. The landmark is initialized in
the SLAM filter as follows; 1) the feature located within 5m
is registered as a 3D point landmark and 2) when stereo depth
value is more distant or unavailable, the feature is encoded
with inverse depth parameterization.

Re-localization in the constructed feature map is important
to deal with being lost in feature tracking which frequently
happens to dynamic walking robot. In order to speed up the
recovery process, the indexing method with Haar coefficients
of a local image patch [21] is used. Its quantization table
contains the feature candidates which correspond to the
specific Haar index. Accordingly, it does not have to search
all the features in the map exhaustively, and it can shorten
recovery time. In our implementation, the robot can be re-
localized within 0.3s, before the next image is received.

V. EXPERIMENTS

Roboray is equipped with a stereo camera of VidereDesign
at its head, which has the field of view of 60◦. The embedded
stereo chip on the camera makes it possible to achieve 30Hz
stereo processing. In addition, the TOF camera is placed at
breast height of Roboray to build a 3D voxel map around the
given environment, which is used to evaluate the estimation
performance in section V-B.

A. Result: SLAM for Humanoid Robot, Roboray

In order to verify the advantage of the proposed on-board
odometry for feature tracking, we compared the proposed
SLAM with the vision-only SLAM [20]. The estimated
odometry successfully predicts the position of previously
registered landmarks at the current image frame. As shown
in Fig. 6, the ratio of the matched features is increased
even with rapid changes in consecutive images and resulting
motion blur. Consequently, the robot pose can be consistently
estimated by stable tracking of the landmarks. On the other
hand, the estimation of the vision-only SLAM became to be
diverged for dynamic walking Roboray with heel-toe motion.
Due to the insufficient performance of feature tracking,
even loop closing process was impossible at the starting
point where Roboray revisited. Figure 7 also shows the
performance of the proposed odometry by comparing the
total number of registered visual landmarks. The vision-only
SLAM frequently misses to track the registered landmarks,
needs to add new ones, and then gets to delete the missed
ones. They make the peaks in Fig. 7 and increase the number
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Sample image frames from SLAM processes (left column: the
proposed SLAM, right column: the vision-only SLAM [20]), which have
matched features (cyan with number) and unmatched features (yellow
without number). The results are obtained by (a, b) moving forward, (c,
d) counterclockwise rotation, and (e, f) moving forward with motion blur.

Fig. 7. Total number of visual landmarks registered in the map of the
proposed SLAM and the vision-only SLAM [20]. The proposed odometry
allows Roboray to estimate its ego-motion with smaller number of land-
marks.

of landmarks unnecessarily. The proposed method can re-
match more features, and so it needs fewer new features
than the vision-only method, thanks to more accurate motion
model of the proposed odometry.

We made a comparison between the estimated trajectories
of the kinematic odometry, the proposed odometry, and
the proposed SLAM (Fig. 8). 1) The kinematic odometry
suffers from the problem that the stance foot cannot be fully
contacted on the ground. As a result, it has large error in
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Fig. 8. Estimated trajectories of the kinematic odometry (red/dash),
the proposed odometry (green/dot-and-dash), and the proposed SLAM
(blue/solid). The estimated end points are presented by diamond, triangle,
and square mark, respectively.

z direction as if it were flying or sinking. 2) In case of
the proposed odometry, the error is more reduced with the
help of IMU and visual odometry. However, it still have
unbounded drift error in rotation and error accumulation in
translation. 3) The SLAM method coupled with the odometry
remarkably improves the estimation result. Its trajectory can
describe the trace of s-curve walking pattern of Roboray
in a transverse plane well. At Table I, we can check the
final pose of the proposed SLAM (square mark in Fig. 8),
compared with that of a ground truth. As the ground truth,
the optimized method such as non-linear bundle adjustment
between two images which have their own 3D metric data
is used (Fig. 9). It shows that the proposed SLAM has small
error enough to close the loop around its revisiting place.

B. Result: 3D Voxel Map Building

The result of the proposed motion estimation can be used
to reconstruct the spatial structure of the environment by

TABLE I
COMPARISON OF THE ESTIMATED POSE AT THE END POINT

position [m] orientation [◦]

x y z roll pitch yaw

proposed -0.208 -0.401 -0.001 -0.944 0.484 8.996
optimized -0.223 -0.345 0.001 -0.048 0.503 8.689
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Fig. 9. The result of feature matching between two images captured at the
starting point (left) and the end point (right) for non-linear optimization

Fig. 10. Bird-eye view of resulting 3D voxel map of the given environment,
which includes the estimated path (white)

organizing a 3D voxel map. In other words, we can verify
the performance of the estimation result from the shape of
the 3D map which is greatly influenced by the accuracy of
the motion estimates.

Based on the estimated trajectory, a 3D voxel map of
20m × 16m environment was built with RGB color data
of stereo camera and depth data of TOF camera (Fig. 10).
Detailed explanation on the map construction will not be
forthcoming, since it is not the scope of this paper. The map
successfully reflects the appearance of the environment, and
we can evaluate how well the proposed method is working.

VI. CONCLUSION

In this paper, we develop a vision-based 3D motion esti-
mation method utilizing on-board odometry information. The
enhanced odometry estimation is embodied with kinematic
odometry, visual odometry and raw IMU data. It improves
SLAM estimation in the situation of the dynamic walking
with heel-toe motion as well as the conventional ZMP-based
walking.

Roboray was tested in a small indoor environment with
the simplest version of SLAM estimation; however, our
architecture also has a capability of sub-mapping SLAM
estimation, which makes Roboray to step forward in larger
environment. In future work, after improving walking ability
for uneven terrain, we plan to test Roboray to localize in a
building-sized space. And, for another future work, we will
empower Roboray with an integrated solution of autonomous
navigation, which is organized with localization, mapping
and path planning.
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