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Gesture Spotting and Recognition
for Human–Robot Interaction

Hee-Deok Yang, A-Yeon Park, and Seong-Whan Lee, Senior Member, IEEE

Abstract—Visual interpretation of gestures can be useful in
accomplishing natural human–robot interaction (HRI). Previous
HRI research focused on issues such as hand gestures, sign lan-
guage, and command gesture recognition. Automatic recognition
of whole-body gestures is required in order for HRI to operate
naturally. This presents a challenging problem, because describing
and modeling meaningful gesture patterns from whole-body ges-
tures is a complex task. This paper presents a new method for
recognition of whole-body key gestures in HRI. A human subject
is first described by a set of features, encoding the angular rela-
tionship between a dozen body parts in 3-D. A feature vector is
then mapped to a codeword of hidden Markov models. In order to
spot key gestures accurately, a sophisticated method of designing
a transition gesture model is proposed. To reduce the states of the
transition gesture model, model reduction which merges similar
states based on data-dependent statistics and relative entropy is
used. The experimental results demonstrate that the proposed
method can be efficient and effective in HRI, for automatic recog-
nition of whole-body key gestures from motion sequences.

Index Terms—Gesture spotting, hidden Markov model (HMM),
human–robot interaction (HRI), mobile robot, transition gesture
model, whole-body gesture recognition.

I. INTRODUCTION

ROBOTICS research is currently supported in a dynamic
environment. Traditional robots were used in factories for

the purpose of manufacturing, transportation, and so on. Re-
cently, a new generation of “service robots” has begun to emerge
[31].

The United Nations (UN), in their recent robotics survey,
divided robotics into three main categories: industrial, profes-
sional service, and personal service robotics [27]. Industrial
robotics is most commonly deployed. The professional service
and personal service robots assist people in the pursuit of their
goals [7], [25].

Human motion sequences are typically analyzed by seg-
menting them into shorter motion sequences, called gestures
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TABLE I
GESTURE TAXONOMY DEFINED BY RIME AND CHIARATURA [20]

[9]. Gestures are most commonly used for communication
among humans, reducing the chances of misclassifying static
poses, by using continuous information. Gestures can be di-
vided into two gestures, a communicative gesture (a key gesture
or a meaningful gesture) and a noncommunicative gesture (a
garbage gesture or a transition gesture) [9]. A key gesture is
motion that carries an explicit meaning to express goals, and a
transition gesture is motion that connects key gestures to cater
to subconscious goals. Gestures can be categorized according
to their functionality, as shown in Table I [20].

The problem of recognizing human motion is divided into
two components: segmentation and recognition. The gesture
segmentation is the task of finding the start and end boundary
points of a legitimate gesture. The gesture segmentation is also
called gesture spotting. The gesture recognition is the task of
matching the segmented gestures against a library of predefined
gestures, to determine which class it belongs to. The task of lo-
cating meaningful key gestures from a human motion sequence
is called key gesture recognition [13]. The difficulty in gesture
spotting is that gesture occurrences vary dynamically, in both
shape and duration.

Gesture segmentation using continuous video was explicitly
attempted by Lee and Kim [13]. They proposed explicit use
of a threshold model corresponding to connecting patterns be-
tween key gestures. Later, Barbic et al. [2] focused only on the
segmentation problem, and proposed three methods, based on
principal component analysis (PCA), probabilistic PCA, and the
Gaussian mixture model (GMM). Although only key gestures
are generally of interest, there are as many transition gestures in
human motion.

Starner et al. [21] used the hidden Markov model (HMM)
for American Sign Language recognition among a variety of
modeling tools. HMM is well known for its capability in mod-
eling spatio-temporal variability [17]. In this method, HMMs
are trained to model the variability of key patterns. They did
not create a model for transition gestures occurring between
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Fig. 1. Motion example consisting of a sequence of key gestures and transition
gestures.

key gestures. However, to date, few previous researches put em-
phasis on explicit modeling of transition gestures. A good ges-
ture recognizer attempts to process this transition motion in a
systematic manner. The goal of this paper is to model transition
gestures explicitly. Fig. 1 shows a sample video sequence con-
taining several atomic gestures.

Gesture recognition for the mobile robot imposes several re-
quirements on the system. First of all, the gesture-recognition
setup is required to be fast enough to fit in the mobile robot en-
vironment, as both the human and robot may be moving while a
gesture is performed. The system may not assume a static back-
ground or a fixed location of the human performing a gesture
[23].

Fig. 2 shows a block diagram of the proposed gesture-spot-
ting and recognition method. The first two stages of feature ex-
traction and feature clustering constitute the important prepro-
cessing of feature processing stage. The output is a sequence
of feature vectors. This sequence is analyzed next in the spot-
ting and recognition module. For this task, a set of HMMs is
required.

The remainder of this paper is organized as follows.
Section II reviews related work, and is divided into three
categories. Section III describes human motion and feature
vector representation. Section IV explains key techniques of
the pattern model, including the design of gesture models, a
transition gesture model, and a spotter network, followed by
the computational algorithm. Section V presents a set of test
results and discusses their implications. Section VI concludes
this paper.

II. RELATED WORK

There are many gesture-recognition systems for HRI. How-
ever, automatic recognition of gestures from a whole-body mo-
tion sequence for HRI is rare. Major approaches relating to
gesture recognition can be divided into two categories: tem-
plate matching-based [3], [12], [14], [17], [18], [24], [30] and
state-space-based approaches [11], [13], [15], [19], [23]. This
section reviews previous work reported in the literature. For a
comprehensive review of motion analysis, in a wider perspec-
tive, reference can be made to the review paper by Aggarwal
et al. [1]. For an HRI framework, reference can be made to
the review paper by Fong et al. [7] and by Thrun [25]. For

human–computer interaction, reference can be made to the re-
view paper by Pavlovic et al. [16].

A. Template Matching-Based Approaches

Template matching-based approaches assume that gesture
models follow a particular pattern that can be modeled as a
spatio-temporal template. Generally, the template matching
in its pure form cannot be easily applied to the domain of
temporal variability, because it is based on the spatial distance
between template and input data. This approach is useful when
the training set is small and the variance is not great.

Waldherr et al. [30] introduced a hand command gesture in-
terface for the control of a mobile robot equipped with a ma-
nipulator. A camera was used to track a person and recognize
hand gestures involving arm motion. To track a person, the adap-
tive tracking algorithm was used. The results were compared
with two methods; a template and a neural-network (NN)-based
method. Four command gestures were experimented with, re-
sulting in a 97% recognition rate. The developed algorithm is
integrated in the mobile robot AMELA, which is equipped with
a color camera mounted on a pan-tilt unit.

Kortenkamp et al. [12] developed a system using a stereo
vision system in order to recognize gestures. The system is
capable of recognizing up to six distinct gestures, such as
pointing and hand signals. The system then interprets these
gestures within the context of intelligent agent architectures.
Gestures are recognized by modeling the person’s head, shoul-
ders, elbows, and hands as a set of proximity spaces. Each
proximity space is a small region in the scene for measuring
stereo disparity and motion. The robot recognizes gestures by
examining the angles between links that connect the proximity
spaces. The PRISM-3 system is equipped with a stereo camera,
mounted on a pan-tilt head.

Bobick and Davis [3] proposed motion energy image (MEI)
and motion history image (MHI) as a template for recognizing
human motion. Apart from the inaccuracy of MHI and MEI,
the reliance on templates meant the system suffered from the
viewpoint problem.

Earlier than this, Takahashi et al. [24] had proposed a spotting
algorithm called continuous dynamic programming (CDP),
in order to recognize seven different body gestures. In this
method, a set of standard sequence patterns corresponding to
key gestures were represented in the form of a spatio-temporal
vector field, and compared with an input sequence using the
CDP matching algorithm.

Pineau et al. [18] developed a mobile robotic assistant to as-
sist elderly individuals with mild cognitive and physical im-
pairments, as well as support nurses in their daily activities.
Their robot communicates with elderly individuals using speech
recognition and touch-screen. The robot can detect and track the
person and predict the motion of a human.

Perzanowski et al. [17] developed a multimodal HRI on the
mobile robot platform. In their research, deictic gestures can
be recognized using a graphical user interface and pointing de-
vice on a personal digital assistant (PDA) or some other form of
end-user terminal (EUT), such as a touch-screen. They showed
how various modes of their interface can be used to facilitate
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Fig. 2. Block diagram of the proposed gesture-spotting system.

communication and collaboration using a multimodal interface.
They overcame the ambiguity of gestures using speech and other
interfaces. Due to the use of PDA or EUT, however, a complex
architecture was needed for their application.

Nakauchi et al. [14] developed a robot which can stand in
line with other people. It is one of the most highly socialized
and crucial skills required for robots which execute tasks in peo-
pled environments. They implemented the proposed method on
Xavier Robot. Xavier has a front-pointing laser light striper with
30 fields of view and two monochrome cameras on a directed
perception pan-tilt head. They modeled humans using personal
space, which is a person’s own territory. In order to stand in line
with other people, they detect humans using disparity informa-
tion and they calculate the direction of bodies without recog-
nizing gestures.

B. State-Space-Based Approaches

State-space-based approaches are used to model systems
whose internal states change over time, based on a string of
input symbols [9]. These states are connected with each other
by certain probabilities. Any sequence as a composition of
these symbols is considered a tour through various states. In
state-space-based approaches, time variance of a symbol is no
longer a problem, because each state is able to visit itself [9].

1) NN Approach: As large data sets become increasingly
available, more emphasis is placed on NNs. Two approaches of
representing temporal information exist. The first is to use a re-
current NN, and the second is to use a multilayer feedforward
network, with a sophisticated preprocessing architecture.

Stiefelhagen et al. [23] used the 3-D position of head and
hands in order to recognize gestures. Skin color was used to
detect and track head and hand regions. A stereo camera was
used to capture the data. Two NNs were constructed, one for
pan and another for the tilted angle of a head pose. These NNs
process the head’s intensity and disparity. The combined use
of depth and gray information proved better result than either
gray or depth information. The algorithm was integrated into
the ARMAR, a humanoid robot with two arms and 23 degrees
of freedom.

2) HMM Approaches: The HMM is one of the most suc-
cessful and widely used tools for modeling signals with spatio-
temporal variability [19]. This tool has been successfully ap-
plied to speech recognition, and has been extended to other
applications such as gesture recognition, protein modeling, and
so on.

Nickel and Stiefelhagen [15] used HMM for recognizing the
3-D pointing gestures for HRI using a stereo camera. When
estimating the performance of the pointing direction, two
approaches were compared: the head-hand line and the 3-D
forearm direction. In the research, the head-hand line was a
better feature in recognizing a 3-D pointing gesture.

Lee and Kim’s method [13] is considered to be the first to
consider transition gestures as a pattern of separate modeling.
The method was constrained to analyzing the 2-D trajectory of a
hand, without considering the number of samples when merging
two states; this is considered to be a considerable weakness of
the method.

More recently, Kahol et al. [10], [11] attempted segmenta-
tion of a complex human motion (e.g., dancing) sequence. An
algorithm called hierarchical activity segmentation (HAS) was
proposed. This algorithm employed a dynamic hierarchical lay-
ered structure for representing the human anatomy, using low-
level motion parameters in order to characterize simple motions
bottom-up. Their method consists of two steps. Potential ges-
ture boundaries is first recognized with three cues, then these
potential gesture boundaries are fed to the naive Bayesian clas-
sifier to find the correct gesture boundary. The coupled HMM
(cHMM) was used for individual gesture patterns to spot dance
sequences. Their method used 3-D information as features.

In many other researches, only key gestures are generally of
interest. However, there are many transition gestures in human
motion. In order to spot key gestures exactly, we model transi-
tion gestures explicitly.

III. GESTURE FEATURE REPRESENTATION

Given a set of video frames, it is required to detect and track a
human subject over time. As in many pattern-recognition prob-
lems, a good representation of the target object is a key to suc-
cess. This section concerns the technique of representing body
features.
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Fig. 3. 3-D whole-body modeling by detecting body components in image
sequence.

Fig. 4. The 13 body components.

Fig. 5. Thirteen feature points extracted from each body component and the
definition of angle features.

A. Feature Extraction

The first step of gesture video processing is to detect a human
subject in each of the frame sequences. Then the 3-D pose of the
human body is estimated using the pose-reconstruction method
described in [32]. It is based on the 3-D model as shown in
Fig. 3. Given an image frame, we identify individual body com-
ponents. Fig. 3 shows two samples of 3-D component detection
results in terms of 3-D models simulating the subject’s gesture.

The information about body components in 3-D allows us to
locate various structural feature points around the body. Thir-
teen feature points are approximated, as shown in Fig. 4 [1].

Representing the feature points can be done in many ways,
namely, the spatial location and velocity. However, these are
sensitive to translation and rotation, respectively. Instead, we
measured the angle from the vertical axis which measured at the
center of the mid-back to each of the feature points. We project
the coordinates of the each body components into , , and
axes, respectively, to extract the features (see Fig. 5).

Then we can write the feature vector corresponding to the
frame at time as follows:

where is the three angle values of the 3-D human body com-
ponent at .

Once the feature vector is defined, we can define a gesture
as an ordered sequence of feature vectors .
These feature vectors will then be clustered in the next step.

B. Feature Clustering

Human motion, including gestures, can be represented as a
sequence of feature vectors. The sequence of feature vectors
constitutes a complex spatio-temporal trajectory in multidimen-
sional space. The motion trajectory is considered as a sequence
of vectors combining meaningful key gestures and meaningless
transition gestures.

Let us write as a feature vector in the -dimensional
feature space . Then, a whole trajectory can be written as
a sequence of feature vectors as . Fig. 6
shows sample trajectories of two gestures in low 3-D subspace;
PCA was done for visualization.

The first step of feature processing to the gesture analysis is
partitioning the feature space. To achieve this goal, we divide
a set of feature vectors into a set of clusters. This allows us to
model the trajectory in the feature space by one in the cluster
space. Different gestures have different cluster trajectories, even
though many clusters are shared by other gestures.

As a means of clustering feature vectors, we employed the
technique of expectation-maximization (EM)-based GMM [5].
This algorithm leads us to a space partition ,
where is the number of clusters, and each cluster corresponds
to a region in the feature space. In this method, a feature vector

can be modeled by a GMM-based distribution function as

(1)

where is the probability density function (PDF) of class
, evaluated at , is the prior probability for class ,

and is the overall PDF evaluated at . Note that
is modeled by a multivariate Gaussian

(2)
where is the mean and is the covariance matrix of the
cluster .

We compute the cluster index of given feature vector, then
the calculated cluster index is used as input as the observation
symbol in the HMM. We have to specify the number of clusters

for each execution of the GMM, and we usually do not know
the best number of clusters in a data set. We chose based
on the amount of data we have. Each gesture has a distinct se-
quence of cluster indices. A general observation is that different
gestures have different trajectories in the cluster space, while
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Fig. 6. Feature trajectories of two gestures in a reduced-dimensional subspace.

the same gestures show very similar trajectories (see Fig. 7).
Note that several occurrences of walking follow the same se-
quence of clusters except for the temporal variations: start and
end points and durations in a cluster. There are no such common
paths among different gestures. Even though different gestures
may have the same cluster indices at a particular time, each ges-
ture shows a highly distinct cluster sequence.

IV. KEY GESTURE SPOTTING

The task of key pattern spotting is to find the start and end
boundary points of a legitimate gesture while ignoring the rest.
It can be regarded as a simplified task of small vocabulary recog-
nition. The two key issues in spotting are how to model of key
patterns discriminately and how to model transition (nonkey)
patterns effectively. Here, we discuss the solutions of key ges-
ture spotting in detail.

Key patterns are modeled by gesture HMMs, and all transi-
tion patterns are modeled by a single sophisticated HMM. Un-
like the key patterns, however, it is not easy to obtain a training
set of transition patterns because there are infinite varieties of
transition motions. The primary focus of this section is this issue
and the method of actually locating key gestures.

A. Gesture Model

A gesture is part of a spatio-temporal trajectory. It has a
stereotypical trajectory that is consistent over a wide range
of variations. Such a pattern can be modeled effectively by
an HMM. When applied to key gesture pattern modeling,

Fig. 7. Cluster trajectories of the same gestures (top) and different gestures
(bottom).
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Fig. 8. Examples of ten gestures.

each state of an HMM represents the local segmental char-
acteristics of the gesture, while the state transitions represent
the sequential order structure of the segments in a gesture’s
trajectory. Since there is a strong temporal constraint in the
gesture patterns, the most natural choice is left–right HMM
with a strict left-to-right transition constraint, order structure,
and no backward transition.

Gesture HMMs are trained using the Baum–Welch algorithm
[19]. For this, we have prepared a set of isolated gesture data.
Since the set is insufficient, we have augmented the set with ges-
ture variations derived from eigengestures and Gaussian random
noise [28]. An eigengesture is an eigenvector derived from the
covariance matrix of the probability distribution in the vector
space of human gestures. The number of HMM states depends
on the average gesture signal length, complexity, and the vari-
ability of the pattern. Various algorithms are considered and pre-
sented to find the number of states of HMM. In this research,
minimum description length (MDL) based on the state-splitting
method is used [22]. The formal procedure for searching the
number of states goes as follows.

Step 1) Start with an HMM with the number of state, equal
to 1.

Step 2) Train the model on the training set using
Baum–Welch algorithm.

Step 3) Select the split which gives the maximum in-
creases in the likelihood on a constrained subset of
parameters.
The increase in the likelihood , for a split
is can be given by the equation shown at the bottom
of the page, where is the set of the two states
resulting from splitting state .

Step 4) Determine the likelihood increase for the complete
model by training a model after splitting the state
with the Baum–Welch algorithm.

Step 5) If the increased likelihood is larger than the MDL
penalty difference, then split and go to step 2. Stop
otherwise.

There are ten different gestures considered in this study. They
are shown in Fig. 8.

B. Transition Gesture Model

Unlike the stereotypic gesture models, there is no constraint
on the remaining transition gesture patterns. A transition
gesture is any motion trajectory or any part of it other than
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Fig. 9. Two types of ergodic model structure. (a) Ergodic or fully connected
topology. (b) Simplified ergodic structure with two dummy or null states and
fewer transitions.

gestures. Therefore, we choose to design a type of ergodic or
fully connected model in which each state of the model can be
reached from all other states. Fig. 9(a) illustrates the ergodic
model topology. As the number of states increases, however,
the number of edges grows by its second order and soon be-
comes unmanageable in our case. Thus a well-known method
is to use the topology of Fig. 9(b). Here, two dummy states
are introduced, enabling a much simpler structure. A dummy
state is also called a null state which produces no observation
symbols [5].

The formal procedure for constructing the transition gesture
model goes as follows.

Step 1) Duplicate all states from all gesture HMMs, each
with an output distribution where is the
output symbol. Let be the set of all states from
all gesture models. These states are highly adapted
to the local gesture patterns. Before using these, we
smooth the output distributions using a Gaussian
filter and then apply the floor smoothing.

Step 2) Attach the original self-transition to each state with
the same probability.

Step 3) All duplicate states have only one outgoing transi-
tion reaching the dummy state ET in Fig. 10. Their
transition probabilities are simply given by

for all

for all (3)

where is the transition probability from state
to the dummy end state, is the probability from
the dummy start state to state , and is the
number of states in .

The two dummy states observe no symbol and are passed
without time delay. They just serve as a branching point and
a merging point, respectively. Therefore, every state can be
reached from every state in a single transition. Thus, the tran-
sition gesture model is an ergodic model. Due to the smoothed
output parameters, the model can be used to model arbitrary
subpatterns appearing in any order (see Fig. 10).

Since the gesture models are optimized for the target pat-
terns, their likelihood will be greater than the transition gesture,
as well as other nontarget models for the target patterns. Con-
versely, if the gesture models are specialized to target patterns,

Fig. 10. Transition gesture model.

their likelihood to transition gesture pattern will drop below that
of the transition gesture model, which allows any arbitrary pat-
terns thanks to the smoothed distributions. The transition ges-
ture model represents every possible pattern. Thus, if there is
a segmental region (or a subsequence ) in an input sequence
and a certain model’s likelihood is greatest or

(4)

then we can safely assume that is the th gesture. In this
sense, the transition gesture model provides a confidence mea-
sure as a function of input data, that is, an adaptive threshold for
gesture spotting.

C. Model Reduction

The number of states in the transition gesture model is equal
to the number of states in all gesture models combined, except
the null start and null final states. This means that the transition
gesture model size increases in proportion to the number and
size of the gesture models. Since there are many states with
similar output distributions, an increase in the number of states
is nothing but a waste of time and space. There is a strong need
for reducing the states.

Among others, relative entropy is a useful measure of distance
between two distributions in HMM states. For two distributions

and where is the set
of output symbols, the symmetric relative entropy is
written as

(5)

The proposed state-reduction procedure is based on (5), and
given as follows.

Step 1) Compute the symmetric relative entropy for each
pair of distributions and of states and ,
respectively, as

(6)

Step 2) Find the state pair with the minimum relative
entropy .
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Step 3) Merge the two states. This is done by computing an
interpolated distribution of and instead of the
simple average of

(7)

we introduce the interpolation weight based on the
expected number of symbol observations in state

(8)

where are two gesture models from which the
two states and came, is the expected
number of observations in state in , is

Kronecker delta
if
otherwise

and are the th symbol and the symbol ob-
served at time by model .
Note that the variable can be computed
using the forward and backward variables of the
Baum–Welch procedure. Note that in the case of
multiple training data, a new summation over the
class samples can be introduced in each of the three
summations above. Now the resulting distribution
can be obtained by

(9)

The two old states are replaced by a single state, say
, and the statistics for the expected

number of observation are added to produce

(10)

which will be used in the future merge with another
state.

Step 4) If the number of states is greater than a threshold
value, then go to step 1. Stop otherwise.

The procedure of model reduction is presented graphically in
Fig. 11.

D. Key Gesture Spotting Model

In continuous human motion, gestures appear intermittently
with transition connecting motion. There is no specific order
among different gestures and any knowing when any gesture
starts to appear and ends. We have defined the meaningless in-
tergesture pattern as the transition gesture. Then one way to de-
fine the alternating sequence of gestures and transition gesture
is to construct a cascade connection of gesture HMMs and a
transition gesture HMM repeatedly. A more effective structure
is a circular interconnection of HMMs: key gesture HMMs and
then one or more transition gesture HMMs which are then con-
nected to the start of the gesture HMMs. In this research, we

Fig. 11. Procedure of the model reduction.

designed the network shown in Fig. 12. As shown in Fig. 12,
we can easily expand the vocabulary by adding a new key ges-
ture HMM model and rebuilding a transition gesture model.

Our design employed two copies of the transition gesture
HMM; one is for the initial motion before the first gesture, and
the other is for the rest transition gesture motions between ges-
tures. This allowed the system to detect the first gesture better
in a series of tests. The ten gesture models shown in Fig. 12
are illustrated as used in the current implementation; a strictly
left–right model with a varied number of states.

The transition gesture model is constructed using the states
of all gesture HMMs. Since they were merged successively to
result in a small number of states, they are poor models for all
gestures. But they are still all-gesture models. This implies that
the model gives a lower threshold to the model likelihood for a
motion segment to be accepted as a gesture. Let be a set of
gesture HMMs. Then, if

then can possibly be as gesture . Furthermore, if happens
to be the most likely, then is estimated to be gesture . On the
other hand, if

then we can say that cannot be a gesture. Note that the com-
puted likelihood of the transition gesture model can be used as
an adaptive confidence measure for spotting a small set of ges-
tures, refer to Fig. 13. With the gesture spotter network, all ges-
tures in human motion can be recognized, and the beginning and
the end points are obtained simultaneously.
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Fig. 12. Key gesture spotting model.

Fig. 13. Likelihood of the transition gesture model is less than the key gesture
models (� ) given a gesture motion, but greater given a segment of transition
gesture movement.

The computation algorithm for the spotting gestures in a
given sequence of observations is based on the dynamic pro-
gramming-based Viterbi algorithm [29]. The spotter model is a
network of HMMs, each of which in turn is a small network.
By viewing it as a two-level network. we perform Viterbi
algorithm at both levels: within individual HMMs and between
those HMMs.

The first level is the ordinary Viterbi algorithm and is called
the state dynamic programming (DP) as the primary compu-
tation is done at the level of states. Given an observation se-
quence , the Viterbi likelihood

with being the
“best” state sequence in each HMM can be computed as

(11)

where and are the parameters of model . Using the
relation, we can compute the joint likelihood of an arbitrary sub-
sequence of observations for any models incrementally and very
efficiently. The above formula is computed for all times , for
all models , and for all states . The boundary condition for the
recurrence relation is as follows:

for all for all for all (12)

where is an initial base, to be explained later. To take a
further step in state-level DP, we modified (12) as

(13)
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This is the Viterbi likelihood of a partial sequence over all
possibilities of starting points . If the initial state likelihood
is written in this way, the left-hand side of (11) is none other
than , and we can write the recurrence relation as

(14)

The segmentation information, the beginning and the end
points of the gesture or transition gesture, can be obtained by
keeping the best state leading to the current state as

(15)

where represents the length of the input sequence. In the case
when the first term in the right-hand side is chosen, then we let
the back pointer simply be .

The DP of the second level is the maximization among com-
peting HMMs. It is done at the dummy start and end states. The
DP is maximization over all possible models linked to the states

for all dummy states (16)

where is the final state of model , and is the likeli-
hood of the final state of model . This score is fed to the initial
states of individual HMMs connected from the dummy states,
as noted in (12) and (13).

Recovering the most likely state sequence or the location of
gestures in the input sequence, we need to trace back the Viterbi
path by following the chain of back pointers .

V. EXPERIMENTAL RESULTS

The proposed approach has been integrated into a mobile
robot, T-Rot (Thinking Robot) [26], and evaluated in a series of
experiments with the KU Gesture Database (DB) [8] and real-
time data captured with a stereo camera, Videre STH-MDCS2
mounted on T-Rot.

A. Robot Platform

The robot platform used in this research is T-Rot, a personal
service robot. T-Rot’s aim is supporting elderly people. Another
important aim is detecting emergency situations such as sitting
on the floor, falling down on the floor, and lying down on the
floor. To recognize the emergency situation, whole-body gesture
recognition is required.

Elderly people are not expert at operating robots. Therefore,
T-Rot is required to be able to interact naturally with elderly
people, similar to the way human–human interaction takes
place. T-Rot has various interaction methods to provide natural
interaction between a robot and its users. The HRI of T-Rot
includes a speech recognizer, a face recognizer, a gesture
recognizer, a speech synthesizer, a facial expression recognizer,
and so on.

Performing various interaction methods, T-Rot has several
main boards. T-Rot has a main board for vision components
such as gesture, face, and expression recognition. As a result,

Fig. 14. T-Rot, the robot used in the proposed experiments.

Fig. 15. Mechanical structure and dimensions of T-Rot.

recognition modules for vision components are performed on
the same main board, and do not operate simultaneously.

As shown in Figs. 14 and 15, T-Rot is equipped with two
stereo cameras, Videre STH-MDCS2, mounted on a pan-tilt
unit. The cameras are located on T-Rot’s head. The first has a
6 mm focal length, and the second has a 12 mm focal length. The
stereo cameras both have a resolution of 320 240. The second
camera, with 12 mm focal length, is used to recognize gestures,
and the first camera, with 6 mm focal length, is used to recog-
nize a face or object located near T-Rot. In addition, the 2-D
laser scanner is attached at the front of T-Rot. This is used for
self-localization, navigation, and obstacle detection. Additional
safety sensors, such as bumpers and several infrared sensors, are
integrated in T-Rot. These sensors are used to detect obstacles.

Fig. 15 shows the dimensions of T-Rot. The height of the lens
is approximately 1.3 m from the ground. T-Rot does not move
when the gesture recognition module is running, so its body does
not tremble. As a result, the captured image from the camera in
T-Rot is adequate for recognizing gestures. The optimum dis-
tance for recognizing gestures is approximately m from
the subject, as only at this distance can the robot see the sub-
ject’s whole body (see Figs. 16 and 17).

B. Experimental Data

The performance of the proposed method is measured with
the KU Gesture DB [8] which contains 14 full-body gestural
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Fig. 16. Experimental environment using real-time data captured with stereo
camera, Videre STH-MDCS2 mounted on T-Rot.

Fig. 17. Examples of raising-a-hand sequence captured with stereo camera,
Videre STH-MDCS2 mounted on T-Rot. (a) Raising a left hand. (b) Raising a
right hand.

motions often encountered in everyday life. Additional experi-
mental data came from the stereo camera, Videre STH-MDCS2,
mounted on T-Rot.

The KU Gesture DB was captured at 60 frames per second
(fps) from 20 subjects using optical 3-D motion technology.
The duration of each gesture is variable from 5 to 10 s. The DB
follows the format of hierarchical translation rotation (HTR),
one of the major motion file formats. HTR files carry informa-
tion about the structure of the subjects based on the linked joint
model. In this paper, only ten gestures were considered for the
experiment.

The real-time data such as walking, sitting on the floor, raising
a hand, and bending were captured with a stereo camera, Videre
STH-MDCS2, with a resolution set to 320 240. Data was cap-
tured for 20 humans of their front and side views. The sequence
length of the data was approximately frames at
30 fps for each sequence. As shown in Fig. 16, the distance for
capturing gestures is approximately 2.5 m from the subject.

Fig. 17 shows examples of a raising-a-hand sequence cap-
tured with the stereo camera mounted on the mobile robot.

Just like many other pattern-recognition approaches using
statistical models, the DB is far from adequate for reliable es-
timation of HMM parameters [28]. We tried to alleviate the
problem by synthesizing gesture variations by adding Gaussian
noise to eigengestures.

As shown in Fig. 8, the KU Gesture DB considered only one
lateral data such as raising a right hand, waving a right hand,
sitting on the floor with right leg first; however, the KU Gesture
DB has 3-D information. Therefore, we can generate the sym-
metric data with graphic tools such as MotionBuilder. In this
research, the right lateral gestures are only used to test. How-
ever, by adding the left lateral gesture HMMs to the key gesture

Fig. 18. Sample result of spotting gestures; two gestures have been located
after an initial transition motion. (a) Transition gesture sequence from 0 to 9.
(b) Walking gesture sequence from 9 to 20 s. (c) Bending gesture sequence from
20 to 25 s.

Fig. 19. Temporal evolution of the log-likelihood of the gesture models and
a transition gesture model; the vertical broken line marks the end of transition
gesture.

spotting model described in Section IV-D, we can also recog-
nize the left lateral gestures.

C. Experimental Results With KU Gesture DB

1) A Gesture Spotting Example: Let us first examine the ac-
tual result of spotting in a given sample sequence. Fig. 18 shows
an example of a motion sequence containing an initial unclassi-
fied motion followed by two gestures in succession.

The time evolution of the likelihood values of gesture and
transition gesture HMMs is illustrated by the curves of Fig. 19.
The transition gesture model has the greatest likelihood during
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TABLE II
KEY GESTURE SPOTTING RESULTS. THE FIGURES IN THE FIVE

CENTRAL COLUMNS DENOTE SAMPLE COUNTS

the first 9 s. From this, we can infer that there was a transi-
tion motion for 9 s which is shown in Fig. 18(a). Then it is fol-
lowed by a walking gesture. As seen in Fig. 18(b), the subject
walked on the floor. It is continuous until the gesture ends at
time 20 s, after which, the likelihood precipitates and gives way
to another gesture, bending or bowing. The start and the end
points of all the gestures and transition gesture were obtained by
back-tracking the Viterbi path after the forward pass described
in Section IV-D.

2) Spotter Performance: In general, most spotting tasks in-
volve three types of errors, namely, substitution, insertion, and
deletion errors. An insertion error occurs when the spotter re-
ports a nonexistent gesture. A deletion error occurs when the
spotter fails to detect a gesture existing in the input stream. A
substitution error occurs when an input gesture is classified in
a wrong category. Following the convention, we measured the
system performance in terms of those errors and the reliability.
The overall performance is defined as

reliability
of correctly recognized gestures

of input gestures of insertion errors
(17)

Table II shows the detailed result of the spotting test. Note
that most of the errors are substitution and insertion errors. The
substitution errors imply incorrect classifications, and the inser-
tion errors imply incorrect segmentation and incorrect modeling
of gesture patterns. The overall reliability with equal priority is
94.9%, as shown in the bottom row.

For a comparison with known methods, we provide the result
by the method proposed by Kahol et al. [10], [11]. In Kahol
et al.’s method, local minima in the segment force were de-
tected as candidate gesture boundaries using three cues. Each
of these local minima was then considered as a potential ges-
ture boundary. This sequence of potential gesture boundaries
and the gesture boundaries identified by the human were used
to train the naive Bayesian classifier. In order to train the naive
Bayesian classifier, a human identified the frames containing the

Fig. 20. Gesture boundaries detected by Kahol et al.’s method.

TABLE III
KEY GESTURE SPOTTING RESULTS WITH KAHOL ET AL.’S METHOD

gesture boundaries within each sequence. As a result, the po-
tential gesture boundaries generated with three cues [11] and
the gesture boundaries identified by the human were used as an
input vector to the naive Bayesian classifier. Fig. 20 shows the
boundaries detected by Kahol et al.’s method for the sequence
in Fig. 18. Due to lack of transition gesture modeling, however,
this method usually produces many more segmentation points
than required.

The initial transition gesture was recognized. For the re-
maining two gestures, oversegmentation is evident at 17 s. It
is believed that the result is attributed to going without explicit
modeling of transition gesture patterns.

Table III shows the test result of Kahol et al.’s method. Note
that reliability values of some gestures are well below those of
the proposed method by more than three percentage points. For
the ease of comparison, we provided Fig. 21. This figure alone
leads us to believe that the use of the transition gesture model
makes a big difference and, without a transition gesture model,
the occurrence of insertion errors is unavoidable.
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Fig. 21. Comparison chart for the proposed method and Kahol et al.’s method.

Fig. 22. Examples of estimated 3-D human body component with various real-time data captured with stereo camera, Videre STH-MDCS2 mounted on T-Rot.

3) Isolated Gesture Recognition: For the final set of tests,
we divided all the gesture data sets into halves, 50 training sam-
ples and 50 test samples. First of all, ten gesture HMMs were
trained with the training sets. For the isolated gesture recogni-
tion task, we used the forward score for each sample

to choose a model with the highest likelihood. The result is
given in Table IV. The recognition rate is the percentage of cor-
rectly recognized gestures from the number of all samples

Recognition rate
of correctly recognized gestures

of input gestures
(18)

Since the test data and the models are different and the transi-
tion gesture model complicates segmentation, it is not possible
to make a direct comparison between Tables II and IV. How-
ever, well-performing models in the isolated recognition task are
more likely to perform better depending on the nature of indi-
vidual gesture patterns, such as structural complexity, temporal

TABLE IV
RECOGNITION RATE OF ISOLATED GESTURES

duration, and so on. Note that the two gestures of “sitting on the
floor” and “getting down on the floor” which perform poorly in
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Fig. 23. Gesture spotting results with real-time data.

the isolated recognition task also worked poorly in the spotting
task. If we improve those models in isolated gesture tasks, we
believe that a further increase can be obtained in gesture spot-
ting tasks.

D. Experimental Results With Real-Time Data

The first step in gesture video processing is to detect a human
subject in each frame sequence. Then the 3-D pose of the
human body is estimated using the pose reconstruction method
described in [32]. It is based on a 3-D model shown in Fig. 22.
Given an image captured with a stereo camera mounted on
T-Rot, we identify individual body components. Fig. 22 shows
various examples of 3-D component detection result in terms
of 3-D models. The detected 3-D human body components
are used to extract the features described in Section II-A. The
human was extracted using the background subtraction method
for real-time data. In this paper, research is focused on gesture
spotting and recognition, which is a difficult task. Therefore,
the human detection method was not considered.

Fig. 23 represents the result of gesture spotting and recogni-
tion with real-time data. As shown in the results, the gesture
spotting results using real-time data is lower than the results
using the KU Gesture DB. The average spotting result is about
87% with real-time data. The detection errors of 3-D human
body components affect the result of gesture spotting. These re-
sults show that our method is also efficient for real-time data.

VI. CONCLUSIONS AND FURTHER RESEARCH

This paper proposed an HMM-based method of spotting and
recognizing gestures embedded in continuous whole-body mo-
tion for HRI. The proposed method employs GMM clustering in
the feature space, producing efficient transition gesture models.
Feature space clustering and the transition gesture HMM state
reduction together form a highly efficient recognition network.
The method of merging two states based on relative entropy and
data-dependent weighting allows the model to be more effective
at capturing the variability in intergesture patterns. In fact, when
compared with a recently proposed method, operating without
explicit transition gesture modeling, a definite advantage was

seen. In effect, the proposed transition gesture modeling is be-
lieved to be an excellent mechanism for recognizing gestures,
as opposed to transition gestures, and rejecting these transition
gestures.

This paper demonstrated that the proposed gesture recogni-
tion interface transcends to a much broader range of personal
service robots. Near-term future work includes extending the
proposed method for spotting and recognition of command ges-
tures for HRI.
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